Menue

Publications

Title Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Pt. II. Crack propagation: Effect of friction on force-displacement curves
Date 08.11.2000
Number 9556
Abstract In micromechanical tests for estimating fiber-matrix interfacial properties, such as the pull-out and microbond tests, fiber debonding from a matrix is often accompanied by friction in debonded areas. In the present study, force-displacement curves, which are usually recorded in these tests, were modeled with taking interfacial friction into consideration. The friction stress was assumed, as a first approximation, to be constant across the interface. Two different approaches to interfacial failure were used: the shear-lag approach with a stress-based debonding criterion (the ultimate interfacial shear strength) and the linear elastic fracture mechanics approach using the critical energy release rate as a condition for crack propagation. The force-displacement curves derived from both models are in good agreement with each other and with experimental micromechanical data. It was shown that any pull-out and microbond experiment comprises four stages: (1) linear loading up to the point where debonding starts; (2) stable crack propagation with friction-controlled debonding; (3) catastrophic debonding; and (4) post-debonding friction. Stable crack propagation was shown to be controlled by both friction and release of residual thermal stresses. An algorithm for estimating both fiber-matrix adhesion and interfacial friction from the microbond and pull-out tests data has been proposed.
Publisher Composite Interfaces
Identifier
Citation Composite Interfaces 7 (2000) 149-175
DOI http://dx.doi.org/10.1163/156855400300185289
Authors Zhandarov, S. ; Pisanova, E. ; Mäder, E.
Tags

Back to list