Menue

Publications

Authors Krause, B.; Konidakis, I.; Stratakis, E.; Pötschke, P.
Title Change of conduction mechanism in polymer/single wall carbon nanotube composites upon introduction of ionic liquids and their investigation by transient absorption spectroscopy: implication for thermoelectric applications
Date 28.07.2023
Number 0
Abstract Polymer composites based on polycarbonate (PC) and polyether ether ketone (PEEK) filled with single-walled carbon nanotubes (SWCNTs, 0.5–2.0 wt %) were melt-mixed to investigate their suitability for thermoelectric applications. Both types of polymer composites exhibited positive Seebeck coefficients (S), indicative for p-type thermoelectric materials. As an additive to improve the thermoelectric performance, three different ionic liquids (ILs), specifically THTDPCl, BMIMPF6, and OMIMCl, were added with the aim to change the thermoelectric conduction type of the composites from p-type to n-type. It was found that in both composite types, among the three ILs employed, only the phosphonium-based IL THTDPCl was able to activate the p- to n-type switching. Moreover, it is revealed that for the thermoelectric parameters and performance, the SWCNT:lL ratio plays a role. In the selected systems, S-values between 61.3 μV/K (PEEK/0.75 wt % SWCNT) and −37.1 μV/K (PEEK/0.75 wt % SWCNT + 3 wt % THTDPCl) were reached. In order to shed light on the physical origins of the thermoelectric properties, the PC-based composites were studied using ultrafast laser time-resolved transient absorption spectroscopy (TAS). The TAS studies revealed that the introduction of ILs in the developed PC/CNT composites leads to the formation of biexcitons when compared to the IL-free composites. Moreover, no direct correlation between S and exciton lifetimes was found for the IL-containing composites. Instead, the exciton lifetime decreases while the conductivity seems to increase due to the availability of more free-charge carriers in the polymer matrix.
Publisher American Chemical Society
Wikidata
Citation ACS Applied Nano Materials 6 (2023) 13027-13036
DOI https://doi.org/10.1021/acsanm.3c01735
Tags

Back to list