Authors
|
Lisbôa, T.V. ; Almeida Jr., J.H.S. ; Spickenheuer, A. ; Stommel, M. ; Amico, S.C. ; Marczak, R.J.
|
Title
|
FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern
|
Date
|
01.04.2022
|
Number
|
60669
|
Abstract
|
This work aims at developing a strategy to obtain damage evolution parameters of wound cylinders to verify the influence of the winding pattern on them. First, a detailed description of the pattern generation is presented. Then, a finite element (FE) model is developed, in which the cylinders are constructed with winding patterns (WP) of 1/1, 2/1, and 3/1 and subjected to radial compressive loading. Since the cylinder-to-plate contact is considered, the variation of radial stiffness with respect to the parallel plate position is also analyzed. In addition, a damage model is used to predict the progressive failure of those cylinders. A finite element model updating (FEMU) routine is then developed to find the damage input parameters that best simulate experimental force–displacement curves. Key results show that the FEMU algorithm is strongly dependent on the initial guesses producing, however, an excellent correlation with experimental data. The predicted force versus displacement curves for all winding patterns are within the experimental standard deviation, except for the cases in which the winding pattern is not taken into consideration. The computational framework proposed is validated both quantitatively and qualitatively through post-mortem analysis of the specimens. The winding pattern affects the failure and damage mechanisms of the cylinders and, consequently conventional FE models that disregard the pattern cannot capture these mechanisms.
|
Publisher
|
Thin-Walled Structures
|
Wikidata
|
|
Citation
|
Thin-Walled Structures 173 (2022) 108954
|
DOI
|
https://doi.org/10.1016/J.TWS.2022.108954
|
Tags
|
|