Menue

Publications

Title Random catalyst walking along polymerized poly(3-hexylthiophene) chains in kumada catalyst-transfer polycondensation
Date 21.06.2010
Number 23962
Abstract A “walking” process of Ni catalysts during Kumada catalyst-transfer polycondensation along polymerizing poly(3-hexylthiophene), P3HT, chains was investigated. To simplify polymer end group identifications, a compound Br-C6H4-Ni(dppe)-Br was prepared and used as an externally addable initiator. Normally, aryl moieties present in initiators incorporate into the structure of the resulting P3HT as the starting groups. We demonstrate that due to the presence of the C-Br group located in the para-position to the Ni substituent of the initiator, two different polymeric products are formed. One of them is the “normal” product, that is, P3HT with a para-bromophenyl end group, whereas another one has the phenyl ring inside the P3HT chain. The content of the product with the internal phenyl ring increases with the increase of the polymerization degree. Control experiments demonstrated that no intermolecular catalyst transfer takes place in the conditions used. Such results suggest that catalytic Ni(0) species are able to walk along the polymerizing chain containing many tens of thienyl rings up to the opposite end and can initiate polymerization there. Numerical analysis of a random hopping model was undertaken, which revealed that a combination of a random catalyst walking along the chain and a “sticking effect” at the end groups is operative in Kumada catalyst-transfer polycondensation.
Publisher Journal of the American Chemical Society
Identifier
Citation Journal of the American Chemical Society 132 (2010) 7803-7810
DOI https://doi.org/10.1021/ja102210r
Authors Tkachov, R. ; Senkovsky, V. ; Komber, H. ; Sommer, J.-U. ; Kiriy, A.
Tags controlled molecular-weight growth polymerization block-copolymers condensation polymerization low polydispersity diblock copolymer coupling reaction bond activation alpha-olefins nickel

Back to list