Menue

Publications

Authors Villmow, T. ; Pötschke, P. ; Pegel, S. ; Häußler, L. ; Kretzschmar, B.
Title Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix
Date 11.08.2008
Number 16077
Abstract Twin-screw extrusion using a co-rotating Berstorff ZE25 extruder was applied to disperse multi-walled carbon nanotubes (MWNT) in poly(lactic acid) (PLA). The masterbatch dilution technique was used whereas four different masterbatches were produced under variation of MWNT content, screw profile, temperature profile, and rotation speed which then were diluted to composites with 0.75 wt% MWNT under varied process conditions. The state of dispersion was investigated by light microscopy from which a dispersion index was quantified. Transmission electron microscopy was performed to observe the MWNT dispersion and network formation in the sub-micron scale.<br />The state of MWNT dispersion within the diluted composites was predominated by the state of filler dispersion in the masterbatches. High rotation speed (500 rpm) that still ensures a certain residence time of the melt combined with a screw profile containing mainly mixing elements were found to be highly convenient to disperse and distribute the MWNT in the PLA matrix as well during masterbatch production as the dilution step. The temperature profile showed less influence, however, an increasing profile resulted in slightly better nanotube dispersions. By means of these processing conditions a percolation set was performed indicating an electrical percolation threshold below 0.5 wt% MWNT content as measured on compression molded samples.
Publisher Polymer
Wikidata Q61901512
Citation Polymer 49 (2008) 3500-3509
DOI http://dx.doi.org/10.1016/j.polymer.2008.06.010
Tags carbon nanotubes twin-screw extrusion polymer-matrix composites electrical-conductivity mechanical-properties nanotube/polymer composites thermal-conductivity poly(l-lactic acid) tensile-strength polycarbonate nanocomposites behavior crystallization

Back to list