Authors Chen, Y. ; Zhang, X. ; Zhao, S. ; Maitz, M.F. ; Zhang, W. ; Yang, S. ; Mao, J. ; Huang, N. ; Wan, G.
Title In situ incorporation of heparin/bivalirudin into a phytic acid coating on biodegradable magnesium with improved anticorrosion and biocompatible properties
Date 03.05.2017
Number 53321
Abstract Heparin (Hep) or bivalirudin (BVLD) were immobilized in an organic phytic acid (PA) coating on Mg by an in situ chemical route. Such a drug-loaded PA coating was designed to enhance both corrosion control and biocompatibility. It was found that both Hep- and BVLD-loaded PA coatings exhibited a dual role in effectively controlling corrosion as well as providing a biofunctional effect. Experiments involving electrochemical corrosion and in vitro degradation by immersion revealed that PA&Hep- and PA&BVLD-coated Mg had the same effect or even slower corrosion/degradation in phosphate buffered saline compared to PA-coated Mg, and it degraded significantly slower than untreated Mg. Moreover, Hep- or BVLD-loaded PA coatings showed relatively good hemocompatibility, with a prolonged clotting time, inhibited platelets adhesion as well as reduced hemolysis compared to untreated Mg. In addition, both PA&Hep and PA&BVLD coatings promoted endothelial cells growth and restrained the proliferation of smooth muscle cells. In vivo assays indicated that PA&Hep-coated Mg exhibited a significant difference in mass loss compared to untreated Mg, as well as better histocompatibility than other samples. These results demonstrate that our coating strategy shows a great potential in surface modification of biodegradable Mg. Finally, the mechanism for the incorporation of the drugs into the PA coating is discussed from both theoretical and practical perspectives.
Publisher Journal of Materials Chemistry B
Citation Journal of Materials Chemistry B 5 (2017) 4162-4176

Back to list