Authors Karak, N. ; Roy, B. ; Voit, B.
Title s-Triazine-based hyperbranched polyethers: synthesis, characterization and properties
Date 20.09.2010
Abstract A series of s-triazine-based hyperbranched polyethers (HBPE) have been synthesized to obtain thermostability but flexible polymers by an interfacial polycondensation of different diols as A2 and cyanuric chloride as B3 monomers using A2 + B3 approach in the presence of a phase transfer catalyst. The polymerization reaction parameters are optimized, and the results indicate that the optimum conditions for the interfacial polycondensation are a 2:3 mole ratio of cyanuric chloride to diol using butanediol, benzyldimethylhexadecyl ammonium chloride as the catalyst, dichloromethane as the organic solvent, and a three-step procedure with keeping the reaction mixture at different low temperatures for 2h/2h/5h. Other techniques such as high-temperature solution, one-step polycondensation, and transesterification were also carried out to synthesize the HBPE but proved to be not suitable due to large number of side reactions. The synthesized polymers were characterized by FTIR, 1H NMR, and 13C NMR spectroscopy, hydroxyl number determination, solution viscosity measurements, and GPC analysis. The thermal behavior of the hyperbranched polymer was investigated by thermogravimetric analysis and differential scanning calorimetry. All the results were compared with those from an analogous linear polyether, obtained from 2-methoxy-4,6-dichloro-s-triazine and butanediol by using the same polymerization technique. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3994–4004, 2010
Journal Journal of Polymer Science: Part A: Polymer Chemistry 48 (2010) 3994-4004

Back to list