Menü

Publikationsliste

Authors Krause, B. ; Konidakis, I. ; Arjmand, M. ; Sundararaj, U. ; Fuge, R. ; Liebscher, M. ; Hampel, S. ; Klaus, M. ; Serpetzoglou, E. ; Stratakis, E. ; Pötschke, P.
Title Nitrogen-doped carbon nanotube/polypropylene composites with negative seebeck coefficient
Date 05.02.2020
Number 57962
Abstract This study describes the application of multi-walled carbon nanotubes that were nitrogen-doped during their synthesis (N-MWCNTs) in melt-mixed polypropylene (PP) composites. Different types of N-MWCNTs, synthesized using different methods, were used and compared. Four of the five MWCNT grades showed negative Seebeck coefficients (S), indicating n-type charge carrier behavior. All prepared composites (with a concentration between 2 and 7.5 wt% N-MWCNTs) also showed negative S values, which in most cases had a higher negative value than the corresponding nanotubes. The S values achieved were between 1.0 µV/K and -13.8 µV/K for the N-MWCNT buckypapers or powders and between -4.7 µV/K and -22.8 µV/K for the corresponding composites. With a higher content of N-MWCNTs, the increase in electrical conductivity led to increasing values of the power factor (PF) despite the unstable behavior of the Seebeck coefficient. The highest power factor was achieved with 4 wt% N-MWCNT, where a suitable combination of high electrical conductivity and acceptable Seebeck coefficient led to a PF value of 6.1 × 10-3 µW/(m·K2). First experiments have shown that transient absorption spectroscopy (TAS) is a useful tool to study the carrier transfer process in CNTs in composites and to correlate it with the Seebeck coefficient.
Publisher Journal of Composites Science
Wikidata
Citation Journal of Composites Science 4 (2020) 14
DOI https://doi.org/10.3390/JCS4010014
Tags polypropylene nitrogen doping carbon nanotube thermoelectric

Back to list