Menü

Publikationsliste

Authors Subramaniam, K. ; Das, A. ; Heinrich, G.
Title Improved oxidation resistance of conducting polychloroprene composites
Date 01.01.2013
Number 35202
Abstract Polychloroprene (CR) composites were prepared using unmodified and ionic liquid modified carbon nanotubes (CNTs) respectively. The composites with ionic liquid modified CNTs (M-CNTs) were found to exhibit high electrical conductivity, improved tensile modulus and thermal stability as opposed to the composites with unmodified CNTs (R-CNTs) [1] and [2]. The current article deals with the accelerated thermal aging of the aforementioned two different composites at various temperatures and time periods in aerobic conditions. Post-aging results are better for M-CNTs/CR composites: Enhanced retention of mechanical property (tensile strength) and reduced surface defects (as revealed by scanning electron microscopy pictures) were observed. It is inferred that ionic liquid (IL) acts as an anti-oxidant protecting the composites from surface oxidation. Fourier transform infrared (FTIR) spectroscopic studies confirmed the presence of hydroxyl and carbonyl regions in the aged samples; however, the intensity of the regions was least for the composites with M-CNTs. Surprisingly, the electrical conductivity of M-CNTs/CR composites increased upon aging and therefore, these composites can be used for applications where conductivity at elevated temperatures is required.
Publisher Composites Science and Technology
Wikidata
Citation Composites Science and Technology 74 (2013) 14-19
DOI https://doi.org/10.1016/j.compscitech.2012.10.002
Tags

Back to list