Authors Zimmerer, C. ; Fredi, G. ; Putzke, S. ; Boldt, R. ; Janke, A. ; Krause, B. ; Drechsler, A. ; Simon, F.
Title Dopamine as a bioinspired adhesion promoter for the metallization of multi-responsive phase change microcapsules
Date 13.09.2022
Number 60442
Abstract This work reports on an environmentally friendly method to produce encapsulated phase change material with a thin nickel coating, applicable for heat conversion, storage and thermal management of heat-sensitive components and suitable for active heating by electromagnetic radiation. A critical issue for the metallization is the adhesion between the polymer capsule shell and the metal layer. Based on previous studies using the bio-molecule dopamine as adhesion promoter in composites and for plastics metallization, commercial paraffin microcapsules were coated with an ultrathin polydopamine film via a simple wet chemical process. Subsequently, a thin, uniform and compact nickel layer was produced by electroless metallization. The successful deposition of both layers was verified with a broad range of imaging and spectroscopic techniques. For the first time, surface-enhanced IR spectroscopy was used to study the deposition of ultrathin PDA films. The combination of SEM and energy-dispersive X-ray spectroscopy allowed resolving the spatial distribution of the elements Ni, N, and O in the MC shell. Electrically conducting paths in the Ni shell were verified by conductive AFM. Thermal analysis revealed that the coated microcapsules show a phase change enthalpy of approx. 170 J/g, suitable for thermal storage and management. Additionally, the nickel layer enhanced the thermal diffusivity of the microcapsule powders and enables a fast heating of the PCM microcapsules by microwave radiation, demonstrating the applicability of the metallized MCs for controlled heating applications.
Publisher Journal of Materials Science
Citation Journal of Materials Science 57 (2022) 16755-16775

Back to list