Authors Naji, A. ; Krause, B. ; Pötschke, P. ; Ameli, A.
Title Extruded polycarbonate/Di-Allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells
Date 10.05.2019
Number 56406
Abstract Here, we report multifunctional polycarbonate (PC)-based conductive polymer composites (CPCs) with outstanding performance manufactured by a simple extrusion process and intended for use in bipolar plate (BPP) applications in polymer electrolyte membrane (PEM) fuel cells. CPCs were developed using a ternary conductive filler system containing carbon nanotube (CNT), carbon fiber (CF), and graphite (G) and by introducing di-allyl phthalate (DAP) as a plasticizer to PC matrix. The samples were fabricated using twin-screw extrusion followed by compression molding and the microstructure, electrical conductivity, thermal conductivity, and mechanical properties were investigated. The results showed a good dispersion of the fillers with some degree of interconnection between dissimilar fillers. The addition of DAP enhanced the electrical conductivity and tensile strength of the CPCs. Due to its plasticizing effect, DAP reduced the processing temperature by 75 °C and facilitated the extrusion of CPCs with filler loads as high as 63 wt% (3 wt% CNT, 30 wt% CF, 30 wt% G). Consequently, CPCs with the through-plane electrical, in-plane electrical and thermal conductivities and tensile strength of 4.2 S cm-1, 34.3 S cm-1, 2.9 W m-1 K-1, and 75.4 MPa, respectively, were achieved. This combination of properties indicates the potential of PC-based composites enriched with hybrid fillers and plasticizers as an alternative material for BPP application.
Publisher Smart Materials and Structures
Citation Smart Materials and Structures 28 (2019) ID 064004

Back to list