Authors Krause, B. ; Pötschke, P. ; Hickmann, T.
Title Improvement of electrical resistivity of highly filled graphite/PP composite based bipolar plates for fuel cells by addition of carbon black
Date 26.08.2019
Number 53784
Abstract Novel material solutions for polymer based bipolar plates in fuel cells require adapted ways to develop suitable material compositions. The common pathway to develop materials with at the same time high electrical as well as thermal conductivity is the use of conductive graphite as filler with contents up to 80-85 wt.%. However, there is a need to develop recipes with maximized conductive behavior at lowest possible content of conductive filler to enhance the mechanical properties and allow good processability. In this study, composites based on polypropylene (PP) and different filler systems were melt-mixed using a lab scale co-rotating twin-screw extruder and compression molded to bipolar type plates. As fillers synthetic (G) or expanded (EG) graphites were incorporated. At the overall filler content of 60 wt.% or 80 wt% part of the graphite was replaced by highly conductive carbon black (CB, 2.5 wt.%, 5.0 wt.%). It was found that the addition of CB significantly reduced the electrical volume as well as the surface resistivity up to values of 0.12 O·cm or 4 mO/square, respectively. For the values of thermal conductivity the kind and particle size of the selected graphite was important. If expanded graphite was partially replaced by CB, the thermal conductivity of PP/EG+CB composites decreased significantly. Otherwise, the combination of synthetic graphite and CB changed the thermal conductivity of PP composites only marginal at the same overall filler content. For both graphite types the filler with larger particle size resulted in higher thermal conductivity.
Publisher AIP Conference Proceedings
Citation AIP Conference Proceedings 2139 (2019) 110006

Back to list