

PD. Dr. Martin Müller IPF Dresden e.V. Hohe Str. 6, 01069 Dresden, Germany Tel: +49 351 4658-405 Fax: +49 351 4658-284 e-mail: mamuller@ipfdd.de

1. Introduction

- Substrates, polyelectrolytes
- IR spectroscopy basics, Fourier Transform, sampling techniques

2. Other IR sampling techniques

- Transmision, External reflexion, Diffuse Reflexion FTIR spectroscopy

3. ATR-IR spectroscopy

3.1. Detection, chemical composition

- PEL (multi)layers: adsorbed amount, thickness, dissociation degree, ion & protein interaction
- PEL complexes: composition/stoichometry

3.2. Conformation and orientation

- Charged polypeptides
- in-plane orientation of PEL multilayers

3.3. Interaction

- Salt, chiral compounds, proteins
- Solvent diffusion

3.4. Combination with other techniques

- Electrokinetics
- 4. Summary

1. Substrates, IR-Methods

1. Polyelectrolytes

Polycations

PDADMAC (Poly(diallyldimethylammonium) (37.000-250.000 g/mol)

PEI Poly(ethylenimine) (750.000 g/mol)

PLL Poly(L-lysine) (25.000 ... 309.000 g/mol)

PMI-P Poly(N-trimethylammmonium propylmaleimide-copropylene)

Total energy of a molecule

$$\mathsf{E}_{\mathsf{TOT}} = \mathsf{E}_{\mathsf{ELEC}} + \mathsf{E}_{\mathsf{VIB}} + \mathsf{E}_{\mathsf{ROT}} + \mathsf{E}_{\mathsf{TRANS}}$$

E_{VIB}: Harmonic oscillator

v= 1/2
$$\pi$$
 (k/ μ)^{1/2}
k: force constant
 μ : reduced mass

Infrared regions

Fundamental vibrations

v(AB): A---B assymmetric, symmetric stretch

δ(ABC): A---B---C bending, deformation

τ(BC): Α---B---C---D torsion

	Wavenumber ⊽ / [cm⁻¹]	Wavelength $\lambda / [\mu m]$	Frequency $v = \mathbf{C} \widetilde{v} / [\mathbf{s}^{-1}]$	Energy E / [J]
Near Infrared (Overtones)	10000 - 4000	1 – 2.5	3 - 1.2 * 10 ¹⁴	1.88 – 0.76 * 10 ⁻¹⁹
Mid Infrared (Fundamental)	4000 - 400	2.5 - 25	1.2 – 0.12 * 10 ¹⁴	7.6 – 0.76 * 10 ⁻²⁰
Far Infrared (Sceletal)	400 – 40	25 - 1000	1.2 – 0.12 * 10 ¹³	7.6 – 0.76 * 10 ⁻²¹

H. Günzler, H. Heise, IR-Spektroskopie, VCH, Weinheim (1996) & J.L. Koenig (ed.), Spectroscopy of Polymers, Elsevier (1999)

Dispersive Spectrometer

Fourier-Transform-(FT)-Spectrometer

Monochromatic radiation (LASER)	$\mathbf{I}(\mathbf{x}) = \mathbf{A}_0 \sin(2 \pi \mathbf{v}_0 \mathbf{x})$	undamped sine
Polychromatic radiation (e.g. Globar)	$\mathbf{I}(\mathbf{x}) = \Sigma_{i} \mathbf{A}_{i} \sin(2 \pi v_{i} \mathbf{x})$	sum of sines: interferogram
Exponentially damped sine function:	$\mathbf{I}(\mathbf{x}) = \mathbf{A}_{0} \sin \left(2 \pi \mathbf{v}_{0} \mathbf{x}\right) \cdot \exp(-2 \pi \gamma \mathbf{x})$ $\downarrow \text{ FT}$) I: intensity x: mirror distance
Lorentzian function:	$\mathbf{A}(\mathbf{v}) = \mathbf{A}_0 \gamma^2 / [\gamma^2 + (\mathbf{v} - \mathbf{v}_0)]^2$	v _{o:} trequency A: absorbance

 γ : half width

• Transmission IR (TRANS-IR)

• Internal Reflexion Spectroscopy (IRS) Attenuated Total Reflexion IR (ATR-IR)

- External-Reflexion-(IR)-Spectroscopy (ERS) Gracing Incidence IR (GIR) IR Reflexion Absorption Spectroscopy (IRRAS)
- Diffuse Reflexion Spectroscopy (DRS) Diffuse Reflexion IR Fourier Transform (DRIFT)

2. Transmission-(TRANS)-IR

(1) Samples

- Solutions in cuvettes (NaCl, CaF₂)
- Films, layers at silicon supports

(2) Quantification of the adsorbed amount:

$$I/I_0 = A \propto M^2 E^2 \cos^2(M, E)$$

A = \varepsilon C d
\Gamma = \varepsilon C d

(3) Sensitivity / Detection limit (DL):

Peak intensity v(C=O): 0.016 ± 0.001 Surf. conc: $\approx 5.952 \ \mu g/cm^2$ DL: $\approx 0.372 \ \mu g/cm^2$

(related to minimum resolvable peak intensity of 1 mA (milliabsorbance) of v(C=O))

PMI-P:

Poly((N-trimethylammmonium) propylmaleimid-co-propylen)

TRANS IR of PMIP-film (25 μ g within a 42*10 mm² stripe on Si-IRE).

(A) Detection, chemical composition

- Adsorbed amount, layer thickness
- Dissociation degree of weak polyacids

(B) Coordination

Complexation of cations by polyacid

(C) Polymer conformation and orientation

- *in-plane* orientation of polypeptides on texturised supports

2. TRANS-IR (A): Adsorbed amount, layer thickness

Absorbance (unpolarized light):

$$\mathbf{A} = -\log (\mathbf{I}/\mathbf{I}_0) = \varepsilon \mathbf{c} \mathbf{d}$$

A: Absorbance

c: concentration

e: Absorption coefficient d: (layer) thickness

Surface concentration:

 $\Gamma = \mathbf{c} d$

Transmission-FTIR

PEL adsorption: $A(z)=A_0 (z - z_0)$

 $A_0 \approx 1.1 \text{ cm}^{-1}$ (dry state)

Ellipsometry

PEL adsorption: $d(z) = d_0 (z - z_0)$

 $d_0 \approx 20 \text{ nm}$ (dry state)

Principle: IR spectroscopy is sensitive for:

- v(C=O) vibration of R-COOH at 1720 1700 cm⁻¹
- $v(COO^{-})$ vibration of R-COO⁻ at 1590 1550 cm⁻¹ ($v_a(COO^{-})$) and 1410 1350 cm⁻¹ $v_s(COO^{-})$)
- → Dissociation degree α of weak (poly)acids: $\alpha = [COO^-] / (F \bullet [COOH] + [COO^-])$

Poly(maleic acid-co-propylene):

FTIR spectra on solutions with different dissociation degrees $\alpha = 0, 0.25, 0.5, 0.75, 1.0$ (bottom to top)

Relation α / pH:

 $pH = pK + log (\alpha / (1 - \alpha))$ or pH = pK + log ([COO⁻] / [COOH])

System: PMAC brush + metal ion

• Poly(methacrylic acid) brushes form stable complexes with a variety of metal cations. Infrared spectra reveal different coordination geometries according to the nature of the cation. These lead to great differences in the stability of the complexes. Primarily the bridging bidentate coordination shows a greater stability than the chelating bidentate.

	R-COO-M				
	monodentate 1567 cm ⁻¹	chelating bidentate 1540-1559 cm ⁻¹	bridging bidentate 1599 - 1616 cm ⁻¹		
• Results					
Cu ²⁺		XX	XXX		
Al ³⁺	xxx		XXX		
La ³⁺		XXX			

R. Konradi, J. Rune, *Macromolecules*, *37*, 6957 (2004) McCluskey, P. H.; Snyder, R.L.; Condrate, R. A.J., *SolidState Chem.* 1989, 83, 332-9. Deacon, G. B.; Phillips, R. J. *Coord. Chem. Rev.* 1980, 33, 227-50. Nicholson, J. W.; Wasson, E. A.; Wilson, A. D. *Br. Polym. J.* 1988,20,97-101.

2. TRANS-IR (C): Polymer orientation

(1) Samples

- stretched polymer foils
- oriented polymer films on texturised Si supports

(2) Orientation analysis

$$R^{T} = \frac{A_{p}}{A_{s}}$$

$$S = \frac{(1-R^{T})}{(2R^{T}+1)} \cdot \frac{2}{(3\cos^{2}\theta-1)}$$

$$\gamma = \arccos\left(\sqrt{\frac{2}{3}S + \frac{1}{3}}\right)$$

- R^T: Dichroic ratio
- θ: Angle: transition dipole moment/molecular axis
- S: Order parameter
- S = 1: Perfect parallel orientation to director field
- S = 0: No orientation
- S = -1/2: Perfect vertical orientation to director field

R. Zbinden, *IR-Spectroscopy of High Polymers*, Academic Press, NY (1964) M. Müller, B. Keßler, K. Lunkwitz, *J. Phys. Chem. B*, 107, (2003)

Abh. zwschen R^{T} und S für $\theta = 0$.

Orientation of hydrophobic polypeptides on texturised supports

Poly(methylglutamate-co-octadecylglutamate)

Resultate

	θ	R	S	γ ₀
Amid A	28°	0.43	0.5	34°
Amid I	38°	0.46	0.5	36°
Amid II	73°	1.63	0.4	41°

Principle

Charakteristics

•For grazing incidence ($\alpha = 76^{\circ}$) a standing wave (E) is formed at the solid/liquid interface by superposition of incoming and outcoming IR radiation.

- This only holds for the p-component i.e. only E_P is active ! (phase shift $\delta = 0^\circ$)
- The s-component is not active (phase shift δ = 180°)

Detection limit

GIR spectrum of PMI-P layer on Si-IRE (76°).

DL:	≈ 2 μg/cm².
Surface conc:	5.952 μg/cm2
Peak intensity v(C=O):	0.003 <u>+</u> 0.001

z-axis orientation

of poly(glutamic acid-co-benzylglutamate). The polymer were deposited on gold substrates by LB technique under variation of surface pressure.

from:

N. Higashi, T. Koga and M. Niwa, presented at the ACS Spring Meeting, April 1-5, San Diego (CAL) (2001)

Orientation analysis

Amide I to Amide II Integrated Intensity Ratio (D=A+/ A_{II}) and the Average Tilt Angle of the Helix Axes from the Surface Normal Arrive At Various Surface Pressure

Surface Pressure (mN/m)	D= AI / AII	γ
20	2.4	45°
30	2.8	40°
40	3.8	33°

 $\mathsf{A}_{\mathsf{AMIDE}|\mathsf{I}}/\mathsf{A}_{\mathsf{AMIDE}|\mathsf{I}} = \varepsilon_1/\varepsilon_2 \left[\frac{1}{2} (\sin\gamma \sin\theta_{\mathsf{I}})^2 + (\cos\gamma \cos\theta_{\mathsf{I}})^2\right] / \left[\frac{1}{2} \sin\gamma \sin\theta_{\mathsf{I}}\right]^2 + (\cos\gamma \cos\theta_{\mathsf{I}})^2\right]$

P-

Principle

 $\mathsf{R}(v) = \mathsf{RI}(v) / \mathsf{RI}_0(v)$

From R the Kubelka-Munk function KM, which is an approximation for the absorbance of the scattered light, may be calculated according to:

 $KM(v) = [1 - R(v)]^2 / 2 R(v)$

Detection limit

2. Diffuse Reflexion Spectroscopy: Flocculant adsorption on hematite

<u>Sample</u>: $Fe_2O_3 (d_{10} - d_{90}: 0.24 - 9.5 \mu m)$ <u>Flocculant</u>: sodium polyacrylate (14.000.000 g/mol) (PAC) F. Jones, J.B. Farrow, W.v. Bronswijk, *Langmuir*, 14 6512 (1998)

DRIFT spectra

venumbers	[<u>cm⁻']:</u>	
v "(COO⁻)	v _s (COO⁻)	Δν
1567	1407	160
1552	1411	141
1674	1382	292
1586	1412	174
1599	1411	188
1652	1410	242
1546	1410	136
1585	1406	179
	va(COO ⁻) 1567 1552 1674 1586 1599 1652 1546 1585	venumbers [cm ⁻¹]: $v_a(COO^-)$ $v_s(COO^-)$ 1567140715521411167413821586141215991411165214101546141015851406

Rules:

- (1) If Δv (adsorbed) > Δv (salt) + v(C=O) present
- -> Monodentate
- (2) If Δv (adsorbed) < Δv (salt) + v(C=O) abesent
- -> Bldentate chelating
- (3) If Δv (adsorbed) $\approx \Delta v$ (salt) + v(C=O) abesent
- -> Bidentate bridging
 - if Δv (adsorbed) is a little bit higher
- -> Assymmetric bridging bidentate

Proposed binding structures PAC/hematite

F. Jones, J.B. Farrow, W.v. Bronswijk, Langmuir, 14 6512 (1998)

Condition for total reflexion

 $\theta_{\text{TOT}} > \theta_{\text{CRIT}} = \arcsin(n_2/n_1)$

Principle

Penetration depth $d_p = \lambda/(2 \pi n_1 [sin^2\theta - n_{21}^2]^{1/2})$

Electrical field $E_{x,y,z} = E_{0 x,y,z} \exp(-z/d_p)$

Electrical field components z.B. $E^{r}_{02y} = E_{02y}/E_{01\perp} = 2 \cos\theta / (1 - n^{2}_{31})^{1/2}$

Characteristics

Under conditions of total reflexion a **standing wave** or **evanescent field** is established at the solid/liquid (gas) interface by superposition of incident and reflected (IR) radiation:

- intensity falls off exponentially in the rare medium
- 3 electrical field components in space (E_x , E_y , E_z)

3. in-situ attenuated total reflexion infrared (ATR-IR) spectroscopy

IR

Principle

SBSR-Technik

 $R(I_0)$

IRE

Options

- Detection:

Ad-, ab-, chemisorption, chemical composition, water content, dissociation degree, H-bonding at C=O groups, kinetics.

- Conformation: polypeptide, proteins, PEO ...
- Orientation: ATR dichroism of characeristic IR polymer bands

M. Müller, in 'Handbook of Polyelectrolytes', Eds. S.K. Tripathy, J. Kumar, H.S. Nalwa, Vol. 1, ASP, 293-312 (2002)

Peak intensity v(C=O): Surface conc: **DL**: $\begin{array}{l} 0.250 \ \underline{+} \ 0.001 \\ 5.952 \ \mu \text{g/cm}^2 \\ \textbf{0.024} \ \mu \text{g/cm}^2. \end{array}$

ATR-FTIR spectrum of the PMI-P layer on the Si-IRE.

3.1. Detection, chemical composition

- (consecutive) PEL adsorption
- Dissociation degree
- Chemical composition (polyelectrolyte complexes/multilayers, blends)
- Hydrogen bonding (v(C=O) shift, $v_a(COO^-)/v_s(COO^-)$ splitting)

3.2. Polymer conformation and orientation

- Reversible conformation changes
- *in-plane* orientation of multilayered polypeptides on texturised substrates

3.3. Interaction

- Salt, chiral compounds
- Protein adsorption
- Diffusion in polymer films

3.4. Combination with other methods

- Elektrokinetics
- Ellipsometry

3.1. ATR-FTIR Detection: PEL adsorption

3.1. ATR-FTIR Detection: consecutive PEL adsorption

in 'Handbook of Polyelectrolytes and Their Applications', Eds. S.K. Tripathy, J. Kumar, H. S. Nalwa, Vol. 1, American Scientific Publishers (ASP), 293-312 (2002)

3.1. ATR-FTIR detection: consecutive PEL adsorption

3.1. Consecutive PEL adsorption: adsorbed amount

<u>System: PEI/PAC</u> pH = 9/4, 4/4, 9/9, 4/9

-				
рН	9/4	<mark>4/</mark> 4	<mark>9/9</mark>	4/9
L	0.148 <u>+</u> 0.015	0.065 <u>+</u> 0.011	0.015 <u>+</u> 0.001	0.0003
Δd_{ATR} (wet)	34 <u>+</u> 5 nm	15 <u>+</u> 4 nm	4 <u>+</u> 1 nm	<1nm
Δd_{AFM} (wet)	40 <u>+</u> 6 nm	-	-	-
∆d _{AFM/ELL} (dry) 25 <u>+</u> 5 nm	_	_	_

Dissociation degree:

 $\alpha_{\rm IR} = A_{\nu(\rm COO^{-})} / (A_{\nu(\rm COO^{-})} + 1.74 A_{\nu(\rm C=O)})$

Integration (INT) or Factor Analyis (FA)

A _{PEC} = a * A _{Polyanion} + b * A _{Polycation}				
n-/n+: a/b:	experimental mixing ratio (SHOULD) effective stoichometric ratio (IS)			
			0.	
	Integration (I)	FA (II)	1.	
A _{Polvanion} :	1510-1430 cm-1	1510-990 cm-1	1.	
A _{Polycation} :	1280-1060 cm-1	1510-990 cm-1	2.	

Results

SHOULD n-/n+	IS (INT) n-/n+ (I)	IS (FA) n-/n+ (II)	
0.50	0.63	0.60	
0.66	0.81	0.74	
1.00	1.00	1.00	
1.50	1.35	1.42	
2.00	1.67	1.81	

Wavenumber / cm⁻¹

3.1. Composition/Stoichometry of centrifuged polyelectrolyte complexes

• Validation of peptide drug: human calcitonin (osteoporose)

Adsorption of human calcitonin (hCT, former CIBA) at Ge model surface.

Conformation analysis of ATR-FTIR spectra at beginning and end of surface induced aggregation.

> H. Bauer, M. Müller, J. Goette, H.P. Merkle, U.P. Fringeli, *Biochemistry* (1994)

3.2. Polymer conformation: PEO containing systems

PEG, crystalline ^a	PEG, molten ^a	mode assignment ^a	polarization ^b	EG ₁	EG ₂	EG4	EG ₆
			-	2918	2918	2918	2918
	• •			2850	2850	2850	2851
2890 s			11				2893
2865 s	2865 s		· · · · •		$\sim \!\! 2870$	2868	2869
1470 m/1463 m			TVI	1466	1466	1465	1466
1345 s			-H				1349
1244 m	1249 m	20	- 11	1254°	1253°	1253°	1244/1252°
1149 s	1140 sh		1		1143	1146	~1146
1119 s			L			¢.	1126
1102 vs	1107 s		11			~1108	1114
963 s	,	CH_2 rock, twist	, 1 1		• •		964
947 m	945 m	CH ₂ rock gauche, C–C stretch	<u>Ι</u> .			~938	944

^a vs, very strong; s, strong; m, medium; w, weak; sh, shoulder; asym, asymmetric; sym, symmetric. ^b Transition dipole moment with respect to the helical axis in crystalline PEG. ^c May overlap with the amide III band.

R. Valiokas, S. Svedhem, S.C.T. Svensson, B. Liedberg, *Langmuir*, 1999, 15, 3390 P. Harder, M. Grunze, R. Dahint, G.M. Whitesides, P.E. Laibinis, *J. Phys. Chem.* 1998, 102, 426-436

System: PEM-5 of PLL-246.000/PVS, 0.01 M, 1 M NaCIO₄

3.2. Polymer orientation: dichroism data analysis

M. Müller, B. Keßler, K. Lunkwitz, J. Phys. Chem. B, 107 (32), 8189 (2003)

Dichroic ratio R _{Amide II}	4.47	2.48	3.33
Order Parameter S	0.75	0.38	0.58
Orientation angle γ	24°	40°	32°

M. Müller, B. Keßler, K. Lunkwitz, J. Phys. Chem.B, 107 (32), 8189 (2003)

System: PEM-5 of α -PLL/PVS, 1M NaClO₄

M _w [g/mol]	L [nm]	S	γ[°]
3.400	3		
20.700	15	-0.09	58
25.700	18	0.10	51
57.900	42	0.27	44
80.000	57	0.35	41
189.400	136	0.59	32
205.000	147	0.75	24
246.800	177	0.79	22
309.500	222	0.82	20

• Confinement of polymer rods with contour length L in surface grooves

PEM-5 of PLL-246.000/PVS, 1M NaCIO₄

AFM, Topography

AFM, Phase

Mean angle of stretched vectors

<γ> ≈ **20°** (ATR-IR: 22°)

M. M., T. Reihs, H.J. Adler, K. Lunkwitz, *MRC*, 25, F56 (2004) M. M., *J. Adhesion*, 80(6), 521 (2004)

Brushes of modified poly(thiophene)

N. Khanduyeva, V. Bocharova, A. Kiriy, U. Oertel, M. Mueller and M. Stamm, PMSE Preprint (2006, submitted)

3.3. Interaction: small anions

System: (PEI/PAC)₂₀ NH_2^+ COO^-

3.3. Interaction: chiral compounds

- EE: 30%

System: PEM-6 of PEI/PAC

Protein: Lysozyme (LYZ, IEP = 11.1), pH = 7.3 -> 4.0

- Uptake at pH = 7.3 (PBS buffer)
- Release at pH = 4.0 (citrate buffer)
- LYZ for both pH

anionic surface neutral surface cationic charge

System: Protein mixture:

(PBS, citrate buffer)

PEM of PEI/PAC

Lysozyme (LYZ, 1 mg/ml) Concanavalin A (COA, 1mg/ml))

14.600 g/mol, IEP = 11.1, 46% α-helix 71.000 g/mol, IEP = 5.4, 64% β-sheet

M.M., K. Bohata et al. Biomacromolecules, 7(4), 1285 (2006)

coefficients in polymer films (Fig. from [5]).

U. Hellstern, V. Hoffmann, J. Mol. Struct., 349, 329 (1995) M. Müller, F.J. Schmitt, Macromol. Symp., 119, 269 (1997)

• Synchronous measurement of surface charge and amount of responsible functional groups (charge carriers).

• Example

pH dependence of the zeta potential of a Si ATR crystal after adsorption of fibrinogen (•) and simultaneously measured change of the $v(COO^{-})$ band in the ATR-FTIR spectrum (\blacklozenge).

DE 102 15 731.6-52 R. Zimmermann, M. Müller, C. Werner

Comparison of different methods

Method	Abbreviation	Information	Detection limit
Transmision Infrared Spectroscopy	TRANS-IR	Molecular information on films, adsorbates (dry state). Direct access to surface concen-trations $[\mu g/cm2]$ via the Lamber-Beer law, knowing the thickness d. Lacking sensitivity. Access to x-ans y-axial polymer orientation.	$\Gamma_{MIN} \approx 0.375$ μ g/cm ² (PMI-P sample)
Attenuated Total Reflexion IR	ATR-IR	Molecular in-situ detection of films and adsorbates on various surfaces (e.g. Si, Ge, diamond, polymer films) in contact to solu-tion and in dry state. Quantification [µg/cm ²] via modified Lamber-Beer-Law knowing d. Access to x-, y- z-axial polymer orientation.	$\Gamma_{MIN} \approx 0.025$ μ g/cm ² (PMI-P sample)
Grazing incidence, Reflexion-absorption IR	GIR, RAIR	Most sensitive IR method for detection of ultrathin films. Limited to gold substrates. No direct correlation between the measured absorbance A and the surface concentration. Access to z-axial polymer orientation	$\Gamma_{MIN} \approx 2 \ \mu g/cm^2$ (PMI-P sample)
Diffuse reflexion IR (Fourier Transform)	DRIR, DRIFT	Molecular information on modifying layers on powdered samples (e.g. silica, granulate a.o.). Quantification not straightforward.	Γ _{MIN} ≈1/1600 (w/w: PMI-P/ silica)
(Surface Enhanced) Raman Spectroscopy	(SERS) RAMAN	Well apted for polymer fibres, not for polymer films. Improvement by SERS.	$\Gamma_{\rm MIN} \approx 20 \ \mu g/cm^2$ (SERS, Kieselgel)
Ellipsometry	ELL	in-situ detection of d of films and adsorbates on various surfaces (e.g. glass, Si, polymer films) in contact to solution/dry state. Quanti-fication of Γ [µg/cm ²] via de Fejter approach.	d _{MIN} < 1 nm
Surface Plasmon Resonance	SPR	in-situ detection of films and adsorbates on various surfaces (e.g. gold, polymer films) in contact to solution/dry state. Quantification $[\mu g/cm^2]$ possible.	$\Gamma_{\rm MIN} < 1 \ \rm ng/cm^2$ (proteins)