Optical spectroscopy
- FTIR and Raman spectroscopy for qualitative and quantitative polymer analysis
- FTIR and Raman microscopy for characterization of contaminations/inclusions as well as analysis of heterogeneities
- Confocal Raman microscopy for analysis of polymers, materials, depth profiles, 3D, structures, defects and phase separations
- Particle analysis in the range from 1 µm up to a few mm
- Raman imaging
- In-situ and temperature dependent Raman microscopy
- Surface enhanced Raman spectroscopy (SERS)
- Nano-IR system for IR spectroscopy at nanoscale (AFM-IR)

FTIR spectroscopy
Dr. Mikhail Malanin
E-Mail: malanin@ipfdd.de
P +49 (0)351 4658 342

Raman and particle analysis including microplastics analysis
Dr. Dieter Fischer
E-mail: fisch@ipfdd.de
P +49 (0)351 4658 268

NMR spectroscopy
- 1H, 13C, 19F and hetero-nuclear NMR spectroscopy for structure characterization of soluble polymers and small molecules (1D and 2D NMR methods)
- 1H and 13C HRMAS NMR spectroscopy for the characterization of swellable substances (1D and 2D NMR methods)

Elemental analysis
- Elemental analysis for C, H, N and S

NMR spectroscopy and elemental analysis
Dr. Hartmut Komber
E-mail: komber@ipfdd.de
P +49 (0)351 4658 343
Chromatography, fractionation and light scattering
- High and ambient temperature size exclusion chromatography (SEC) for determination of molar mass distributions in organic and aqueous media
- Light scattering and viscosity detection, in batch or on-line for absolute determination of molar masses as well as dimensions, conformations, thermodynamic parameters of macromolecules, nanoparticles and conjugates
- Asymmetrical flow field fractionation (AF4) and thermal field flow fractionation (thFFF) for the separation and characterization of polymers and macromolecules in the range of 10^{-10} kg/mol
- Gas chromatography: classical, head-space and pyrolysis GC coupled with mass spectrometry for qualitative determination of volatile compounds

Matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS)
- Determination of molar masses and their distributions, characterization of cyclic and linear structures and monomer units with special start and end groups
- Analysis of reaction mechanisms of synthetic polymers and bio-macromolecules
- Coupling of MALDI with chromatographic techniques for the characterization of molecular and chemical heterogeneities in homo and block copolymers

Optical characterization of thin films
- Spectroscopic ellipsometry for determination of film thickness, optical dispersion, and anisotropy of absorbing and transparent polymer films with thicknesses of 1-1000 nm
- Müller matrix microscopy for analysis of optically biaxial layers in transmission, in dry state or microfluidic cell
- Quartz crystal microbalance in combination with spectroscopic ellipsometry for simultaneous characterization of optical and mechanical properties

Thermal analysis
- Thermogravimetric investigations of thermal and thermo-oxidative degradation of polymers, analysis of volatile compounds by coupled FTIR spectroscopy
- Dynamic differential calorimetry for the investigation of melting, crystallization and glass transition behavior as well as solid-solid phase transitions and cross-linking reactions in polymers

Contact
Leibniz-Institut für Polymerforschung Dresden e.V.
Department Analytics
Dr. Klaus-Jochen Eichhorn
E-Mail: kjeich@ipfdd.de
P +49 (0)351 4658 256
F +49 (0)351 4658 565
Hohe Straße 6 . 01069 Dresden . Germany
www.ipfdd.de