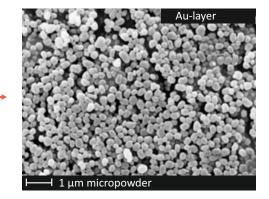

Chemically bonded PAI-PTFE anti-friction coatings for low-wear and low-maintenance tribological applications

State of the art

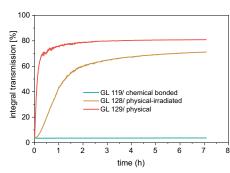
Because of its chemical structure, Polytetrafluoroethylen (PTFE) belongs to the group of high performance plastics. The material is chemically inert, antiadhesive, can be used in a wide temperature range (-200 ... 260°C) and exhibits a very low friction coefficient (μ = 0.17/ 0.04 with oil). For that reason, it is widely utilized as a solid lubricant or anti-friction additive for many years. However, the polymer has some limiting drawbacks resulting in elevated wear or lack of processing and material stability.



PTFE treatment by high-energy irradiation

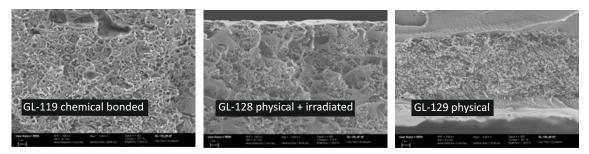
Shortened mechanism to enhance the PTFE compatibility and for the generation of reactive groups as basis for chemical bonding with e.g. other polymers, oils and greases

SEM-images of PTFE micropowder original (left)/ irradiated with 2000 kGy (right)

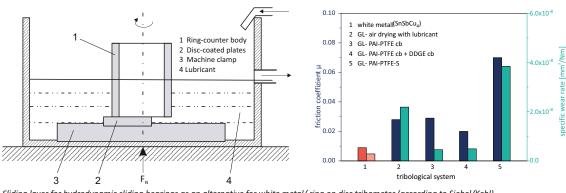

Properties of radiation modified PTFE-micropowder:

- lower molecular weight, melting temperature and melting viscosity
- generation of persistent radicals and reactive groups
- same broad application temperature and low friction coefficient

New material concepts for bulk materials, sliding lacquers and oils/ greases


Example:

Chemically bonded PAI-PTFE Sliding lacquers for low-wear and low-maintenance tribological applications



Dispersion stability of sliding lacquers at ~2300 g without additional dispersion additives

SEM-image of finally cured Sliding lacquer / cryo cut

Sliding layer for hydrodynamic sliding bearings as an alternative for white metal/ring on disc tribometer (according to Siebel/Kehl)

Innovative advantages of PTFE chemical bonding

- reactive bonding of PTFE to e.g. polymers results in a drastic decrease of wear
- the friction coefficient value corresponds to origin PTFE
- drastic enhancement of long-term dispersion stability without additional additive
- optimal distribution and breaking down behavior of PTFE-particles
- improvement of bulk phase properties in comparison to physical mixtures

Contact

Leibniz-Institut für Polymerforschung Dresden e. V. Department Materials Engineering Dr. Michaela Gedan-Smolka E-Mail: mgedan@ipfdd.de T +49 (0)351 4658 448

Acknowledgement

Bundesministerium für Bildung und Forschung

Financial support was given by the DFG (DFG LE1153/6-2), the BMBF (MoRe-PTFE 03FO2172) as well as the AiF (AiF 11708 B/ 1+ 2, AiF 15902 BR/2).

DFG Deutsche

Hohe Straße 6 . 01069 Dresden . Germany www.ipfdd.de