Menue

Publications

Authors Jiang, J. ; Lauke, B. ; Beckert, W. ; Schüller, T.
Title Numerical simulation of micro-scratch tests for coating/substrate composites
Date 24.07.2001
Number 9134
Abstract In this paper the micro-scratch test is simulated by ANSYS finite element code for thin hard coating on substrate composite material system. Coulomb friction between indenter and material surface is considered. The material elastic-plastic properties are taken into account. Contact elements are used to simulate the frictional contact between indenter and material surfaces, as well as the frictional contact after the detachment of coating/substrate interfaces has taken place. In the case of coating/substrate interfaces being perfectly bonded, the distributions of interfacial normal stress and shear stress are obtained for the material system subjected to normal and tangential loading. In the case of considering the detachment of interfaces, the length of interfacial detachment and the redistribution of stresses because of interfacial detachments are obtained. The influences of different frictional coefficients and different indenter moving distances on the distributions of stresses and displacements are studied. In the simulation, the interfacial adhesion shear strength is considered as a main adhesion parameter of coating/substrate interfaces. The critical normal loading from scratch tests are directly related to interfacial adhesion shear strengths. Using the critical normal loading known from experiments, the interfacial adhesion shear strength is obtained from the calculation. When the interfacial adhesion shear strength is known, the critical normal loading is obtained for different coating thicknesses. The numerical results are compared with the experimental values for composite materials of thin TiN coating on stainless steel substrate.
Publisher Composite Interfaces
Wikidata
Citation Composite Interfaces 8 (2001) 19-40
DOI https://doi.org/10.1163/15685540052543638
Tags

Back to list