Menue

Publications

Authors Karimpour-Motlagh, N. ; Moghaddam, A.S. ; Khonakdar, H. A. ; Jafari, S.H. ; Wagenknecht, U. ; Kasbi, S.F. ; Shojaei, S. ; Mirzaee, R.
Title A theoretical and experimental analysis of the effect of nanoclay on gas perm-selectivity of biodegradable PLA/EVA blends in the presence and absence of compatibilizer
Date 03.12.2020
Number 58983
Abstract Poly (lactic acid) (PLA)–based compounds are widely used in thin–film and food packaging industries. Herein, PLA/ethylene vinyl acetate copolymer (EVA)/nanoclay nanocomposites are prepared in various compositions by melt blending. The gas permeability against N2, CO2, and O2 gases is determined as a function of composition and morphology of the nanocomposites. Inclusion of high aspect ratio of platelet–like nanoclay to the blend reduces the gas diffusion. The best barrier properties against all gases is observed on introducing 5 wt% poly(ethylene/n–butyl acrylate glycidyl methacrylate) copolymer as compatibilizer to the PLA/EVA/nanoclay (75/25/5) system. The scanning and transmission electron microscopic analyses and wide–angle X–ray scattering studies reveal that inclusion of compatibilizer to the filled–blends improves the blend morphology, dispersion state, and intercalation level of clay platelets which are preferably localized at the interface of the blend. Analysis of selectivity parameter (a) shows the lowest O2 permeability and the highest aCO2/N2 and aO2/N2 values for the compatibilized filled–blend (75/25/5/5). In situ aspect ratio of clay and the degree of intercalation are theoretically evaluated based on the permeability data using various empirical models. It is found that the compatibilized filled–blend has the highest aspect ratio and intercalation level that are responsible for the optimum perm–selectivity performance.
Publisher Macromolecular Materials and Engineering
Wikidata
Citation Macromolecular Materials and Engineering 305 (2020) 2000433
DOI https://doi.org/10.1002/MAME.202000433
Tags

Back to list