Development of energy efficient / lightweight composite parts and tooling based on Tailored Fibre Placement technology / self heating technology


  • January 2011 - December 2012

Project description

The approach to be investigated in EMBROIDERY is the development of a resistive self heated layer able to be embedded within either rigid composite laminates of elastomeric materials for membranes manufacturing. This heating layer will by manufactured by means of the Tailored Fibre Placement (TFP) technology. This will bring the following benefits:

  • The development of a reusable self heating membrane for infusion and preforming operations which will dramatically increase the productivity and the quality of the components.
  • In RTM composite tooling, the integration of a heating layer close to the cavity, allowing much faster heating/cooling ramps and, overall, decreasing the energy demand compared to the current techniques.

In addition, TFP provides an outstanding capability to the composites industry, the fibre steering potential. That means that in the preform, the fibre orientation at each point can be oriented according to the stress field of the component, exploiting the full capabilities of the reinforcing fibre and optimising the material usage. However, in practice this potential is not exploited yet due to the lack of a computer commercial software package which takes into account the fibre steering feature. Therefore, a second focus of this project will be put on developing computer algorithms which account for steering potential. The final objective is the implementation of such algorithms into a commercial software for composites analysis.

A third focus of the research will be put on the automation of the Tailored Fibre Placement technology itself. TFP has been developed in the mid 90s and is based on embroidery machinery used in the garment textile industry. The machines have been adapted to deposit and stitch fibre rovings onto a base material. However, being a relatively new technology and coming from the conventional textile industry, it is necessary to improve and adapt the process and equipment to the specific requirements of the advanced composites industry manufacturing.

Project leader

Project partners