Polymeric actuators

Contact: Dr. L. Ionov

Actuators are materials and devices, which are able to change their shape in response to change of environmental conditions and, thus, perform mechanical work on nano, micro and marcoscales. Actuators find very broad application in microfabrication, microelectronics, medicine, lab-on-chip systems, etc. Because of their complexity, development of actuators includes both material and engineering aspects. This review focuses solely on the material aspect of development of actuators and does not touch engineering (design of devices). In other words, this review discusses materials, which are intrinsically able to move. There are plenty of examples of actuators based on metals, metal oxides and organic materials such as shape memory metals and polymers, bimetal strings, hydrogels etc. Among huge variety of different actuator materials polymer-based ones are highly attractive due to a spectrum of different properties of polymers. The polymers can be soft (viscoelastic state) and hard (glassy state) depending on their chemical and physical structure that allows the design of soft actuators for handling of soft living tissues and hard actuators for handling of metals 10. There are many polymers sensitive to different stimuli that allows design of actuators, which can be controlled by temperature, pH, biosignals, light, etc. Many polymers are biocompatible and biodegradable that allows integration of polymeric actuators in living systems and their resorption there.

We are interested in engineering of functional polymer thin films which are able to reversibly fold and form different 3D objects in response to change of environmental conditions. The primary goal is to use self-rolled tubes and self-folding capsules for encapsulation of cells, design of scaffolds for tissue engineering. asdasdasd


Zhang, Y.; Ionov, L.
Reversibly crosslinkable thermoresponsive self-folding hydrogel films  more
Langmuir 2015, 31, 4552−4557.

Stroganov, V.; Al-Hussein, M.; Sommer, J.U.; Janke, A.; Zakharchenko, S.; Ionov, L.
Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization more
Nano Letters 2015, 15 (3), 1786–1790.

Liu, F.; Jiang, S.; Ionov, L.; Agarwal, S.
Thermophilic films and fibers from photo cross-linkable UCST-type polymers more
Polymer Chemistry 2015, 6, 2769–2776.

Zakharchenko, S.; Ionov, L.
Anisotropic liquid microcapsules from biomimetic self-folding polymer films more
ACS Applied Materials & Interfaces 2015, DOI: 10.1021/am505755j.

Ionov, L
Hydrogel-based actuators: possibilities and limitations more
Materials Today 2014, 17(10), 494-503.

Stroganov, V.; Zakharchenko, S.; Sperling, E.; Meyer, A.K.; Schmidt, O.G; Ionov, L
Biodegradable self-folding polymer films with controlled thermo-triggered folding more
Advanced Functional Materials 2014, 24(27), 4357–4363.

Zhang, Y.; Ionov, L.
Actuating Porous Polyimide Films more
ACS Applied Materials & Interfaces, 2014, 6 (13), 10072–10077.

Magdanz, V.; Stoychey, G.; Ionov, L.; Sanchez, S.; Schmidt, O.
Stimuli-Responsive Microjets with Reconfigurable Shape more
Angew. Chem. Int. Ed., 126 (10), 2014, 271-2715.

Ionov, L.
Biomimetic hydrogel-based actuating systems more
Advanced Functional Materials 23, 2013, 4555–4570.

Zakharchenko, S.; Puretskiy, N.; Stoychev, G.; Waurisch, C.; Hickey, S.G.; Eychmüller, A.; Sommer, J.U.; Ionov, L.
Stimuli-responsive hierarchically self-assembled 3D porous polymer-based structures with aligned pores  more
Journal of Materials Chemistry B (1) 2013, 1786-1793.

Ionov, L.; Zakharchenko, S.; Stoychev, G.
Soft Microorigami: Stimuli-responsive Self-folding Polymer Films  more
Advances in Science and Technology (77) 2013, 348-353.

Ionov, L.
3D Microfabrication using stimuli-responsive self-folding polymer films  more
Polymer Reviews (53) 2013, 92-107 .

Stoychev, G.; Turcaud, S.; Dunlop, J.; Ionov, L.
Hierarchical multi-step folding of polymer bilayers more
Advanced Functional Materials (23) 2013, 2295.

Stoychev, G.; Zakharchenko, S.; Turcaud, S.; Dunlop, J.; Ionov, L. 
Shape programmed folding of stimuli-responsive polymer bilayers more
ACS Nano 6 (5) (2012), 3925–3934.

Ionov, L.; 
Biomimetic 3D self-assembling biomicroconstructs by spontaneous deformation of thin polymer films more
Journal of Materials Chemistry (2012), 22, 19366–19375.

Ionov, L.
Soft microorigami: self-folding polymer films more
Soft Matter (2011) 6786–6791.  

Zakharchenko, S.; Sperling, E.; Ionov, L.
Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds more
Biomacromolecules 12 (6) (2011)  2211–2215.

Stoychev, G.; Puretskiy, N.;  Ionov, L.
Self-folding all-polymer thermoresponsive microcapsules more
Soft Matter (2011) 3277-3279

Zakharchenko, S.; Puretskiy, N.; Stoychev, G.; Stamm, M.; Ionov, L.
Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes more
Soft Matter 6 (2010) 2633-2636