In-situ ellipsometry studies of thin swollen films, a review

Wojciech Ogiegło, Herbert Wormeester, Klaus-Jochen Eichhorn, Matthias Wessling, Nieck E. Benes
Thin polymer films
Why are they important?

Functional coatings
Membranes
Displays

Solar cells
Barriers
Biosensitive films
Sensors
Thin polymer films

Interactions with penetrants

Dry

Swollen
Spectroscopic ellipsometry

in-situ
Spectroscopic ellipsometry

Drawbacks? or opportunities?
In-situ configurations

No cell

Advantages:
- No window effects
- Multi-angle possibility

Disadvantages:
- Less defined ambient

Delivery of osmotic shocks

References:
- Richardson H., et al., The European Physical Journal E, 2003, 12(0), p. 87-91
In-situ configurations
Trapezoidal cell

Advantages:
- Controlled ambient
- Static or flowing

Disadvantages:
- Window offsets
- Angle offset – cell geometry

Typical angles of incidence: 65° - 75°
In-situ configurations

Backside configuration

Advantages:
- Multiple angles of incidence
- Relative simplicity (no windows)

Disadvantages:
- Bubble formation

In-situ configurations

High pressure cells

- **Advantages:**
 - $p_{\text{max}} = 200$ bar
 - Broader T range 0 - 220 °C
 - Liquids, vapors, gases, vacuum, …

- **Disadvantages:**
 - Window offsets
 - Ambient optical dispersion

Ogieglo W., et al., Journal of Membrane Science, **2013**, 437(0), p. 313-323

![Diagram of high pressure cell setup](image)
Types of polymeric materials

Glassy state:
- Frozen macromolecule
- Non-equilibrium
- History dependence

Rubbery state:
- Fast macromolecule
- Equilibrium

Types of polymeric materials

Block co-polymers
Multilayer films
Zwitterionic films
Cyclic oligomers
Hydrogels
Particle films
Conducting polymers
Composite films
Metal Organic Frameworks
Saccharides

Types of studied phenomena

Inaccurate at very high swelling

Dry film

Swollen film

Optical contrast - sensors

Good sensor!

Bad sensor!
Types of studied phenomena

Drying processes

Penetrant volume fractions

1. Film dilation

\[\phi_{dil.} = \frac{h_{SP} - h_{DP}}{h_{SP}} \]

2. Effective medium approximations

\[\phi_1 \cdot \frac{n_1^2 - n_{mix}^2}{n_1^2 + 2n_{mix}^2} + \phi_2 \cdot \frac{n_2^2 - n_{mix}^2}{n_2^2 + 2n_{mix}^2} = 0 \]

3. Clausius - Mossotti

\[\frac{n^2 - 1}{n^2 + 2} = \frac{R}{M_w} \cdot \rho \]

\[\frac{n_{mix}^2 - 1}{n_{mix}^2 + 2} = q_{solv.} \cdot C_{solv.} + q_{polym.} \cdot C_{polym.} \]

Glassy systems?

Ogieglo W., et al., Polymer, 2014, in press

Thermodynamic parameters

\[\ln(a) = \ln(\phi_S) + (1 - \phi_S) + \chi \cdot (1 - \phi_S)^2 \]

Free-standing film: \[\Omega = \left(1 - \frac{2M_e}{M}\right) \frac{V_{HE}}{3RT} \left(\frac{1}{\alpha} - \frac{1}{2\alpha^3}\right) \]

Thin supported film: \[\Omega = \left(1 - \frac{2M_e}{M}\right) \frac{V_{HE}}{3RT} \left(\alpha - \frac{1}{2\alpha}\right) \]
Ellipsometry combined with other techniques

Quartz Crystal Microbalance (QCM)

Highly complementary to ellipsometry

Ellipsometry

QCM-D

Thickness $\varepsilon_1, \varepsilon_2$

Mass (Viscoelastic properties)
Ellipsometry combined with other techniques

Atomic Force Microscopy (AFM)

Source: Aalto University, School of Science, Department of Applied Physics

Roughness increases
Ellipsometry combined with other techniques

Neutron and X-ray reflectivity
Electrochemical methods
Gravimetric methods
Contact angle measurements
Spectroscopy (IR, UV-VIS)
Surface plasmon resonance
Methods to determine mechanical properties

...
Ellipsometry combined with other techniques

Neutron and X-ray reflectivity
Electrochemical methods
Gravimetric methods
Contact angle measurements
Spectroscopy (IR, UV-VIS)
Surface plasmon resonance
Methods to determine mechanical properties

Ellipsometry combined with other techniques

Neutron and X-ray reflectivity
Electrochemical methods
Gravimetric methods
Contact angle measurements
Spectroscopy (IR, UV-VIS)
Surface plasmon resonance
Methods to determine mechanical properties

Ellipsometry combined with other techniques
Neutron and X-ray reflectivity
Electrochemical methods
Gravimetric methods
Contact angle measurements
Spectroscopy (IR, UV-VIS)
Surface plasmon resonance
Methods to determine **mechanical properties**

In more detail:

Ogieglo W., PhD Thesis, Chapter 1
Thank you for your attention!

Questions?