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1. Supramolecular Approach to Macromolecular Self-Assembly
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BIOCONJUGATES- Bio and mutifunctional polymer architectures
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BIOCONJUGATES- Bio and mutifunctional polymer architectures
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BIOCONJUGATES- Bio and mutifunctional polymer architectures
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Figure 7. Common characterization and imaging techniques for protein—polyelectrolyte
complexes. Protein—polyelectrolyte complexes span several length scales. The
combination of several analytical techniques can be used to characterize the constituent
molecules, micellar assemblies, and macrophase separated droplets.
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Constructing hybrid protein zymogens through protective dendritic assembly, Angew Chem Int Ed, 53 (2014), pp. 324-328
Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates, Nat Chem, 5 (2013), pp. 582-589
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Fig. 1 General scheme and setup for the synthesis of protein-polymer amphiphiles. Top: Conventional ATRP approach and, Bottom: oxygen tolerant,
photoinduced polymerization developed in this study.
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3. Characterization of protein-polymer
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Fig. 3 Structural characterization of BSA-polymer bioconjugates. a Thermograms of BSA, BSA-Br, and BSA-PS conjugates (N, atmosphere). b CD spectra
of BSA, BSA-Br (l,), and BSA-polymer conjugates. (¢) Thermograms of BSA, BSA-Br, and BSA-PAAm conjugates (N, atmosphere). d Thermograms of BSA,

BSA-Br, and BSA-PDMAEMA conjugates (N, atmosphere).
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Fig. 5 BSA-PS nanocarriers—ferritin encapsulation. SEC traces at a 254 nm and b 540 nm. ¢ SEM and d TEM micrographs of BSA-PS prepared in the

presence of ferritin.
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Figure 2 | Characterization of BSA-NH,/PNIPAAm conjugates.
(@) SDS-PAGE profiles; lane 1, BSA-NH,; lane 2, BSA-NH,/PNIPAAm;
lane 3, native BSA; and marker lane. (b) Zeta potential measurements for
BSA (black, —22mv), BSA-NH,, (red, +13mv) and BSA-NH./PNIPAAm
(blue, +9mv) in 5.0 mM PBS pH 6.8 bulffer solution at room temperature.
(€) MALDI-TOF MS of BSA-NH,/PNIPAAm conjugates showing mass
peaks for BSA conjugated with one, two or three PNIPAAm chains. The
mass differences between neighbouring peaks correspond to the molecular
1 7 weight of the synthesized PNIPAAm (M,, 8,800 g mol — ', PDI 1.19).
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Figure 3. Confocal microscope imaging of Hela cells incubated with (A) DOX loaded cHSA-
PEO(2000),5-DOX;; (4) and (B) DOX hydrochloride for 24 h.
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1. Shape and size of dried/frozen samples (TEM, SEM, AFM, DLS, SLS)

2. Charge and molar ratio of a complex in solution (gel electrophoresis (GE),
Ethidium bromide intercalation assay (EBIA), fluorescence dye intercalation
assay (FLIA), fluorescence polarization of labelled ODN (FLP), fluorescence
intensity of labelled dendrimers (FL), zeta potential)

3. Stability of dendriplexes (Nuclease and serum protection assays, release
using heparin)

siRNA  +  dendrimer = dendriplex

20

Journal of Controlled Release 135 (2009) 186—197
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against RNases. Dendriplexes at an N/P ratio of 10.7 were
incubated in the absence or presence of the indicated
treatments.
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Fluorescence anisotropy imaging in drug discovery
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Analysis of dendrimer-protein interactions and their implications on potential
applications of dendrimers in nanomedicine
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Fig. 6 (a) UV-vis spectra G5.5 + BSA indicating Trp position. (b) Comparison of UV-vis spectra for varying compositions of G5.5/BSA complexes.

Table 3 Comparison of characteristics of G5.5/BSA complexes formed

Ratio G5.5 : BSA 2:1 1:1 :2 1:3
Effective ratio 1:0.25 1:0.47 1:0.73 1:1.68
G5.5 : BSA (from UV-vis)

Zeta potential () —-41 mV -38mV  -33.4mV -32mV
DLS Ry Aggregates 4.06 nm 4.15nm 3.95 nm

27
Nanoscale, 2021,13, 2703-2713
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From 1D Rods to 3D Networks: A Biohybrid Topological Diversity Investigated by
Asymmetrical Flow Field-Flow Fractionation
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28 Dealing with the complexity of conjugated and self-assembled polymer-nanostructures
using field-flow fractionation Anal Sci Adv. 2021;2:95-108. Macromolecules 2015, 48, 4607-4619
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From 1D Rods to 3D Networks: A Biohybrid Topological Diversity Investigated by
Asymmetrical Flow Field-Flow Fractionation
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(a) AF4 fractograms (RI signal, dashed line; LS signal, solid line) with differently determined radii by online MALS
(Rg, red triangles), by online DLS (Rh, green circles), and by retention times (Rh, black squares) and (b)
conformation plot with differently determined radii as a function of molar mass with calculated scaling factors of

biohybrid structures formed by avidin/GD-B1 (1/3).
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From 1D Rods to 3D Networks: A Biohybrid Topological Diversity Investigated by

Asymmetrical Flow Field-Flow Fractionation
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Multivalent Protein-Loaded pH-Stable Polymersomes: First Step Towards Protein

Targeted Therapeutics
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Multivalent Protein-Loaded pH-Stable Polymersomes: First Step Towards Protein Targeted Therapeutics

Protein-loaded polymersomes (Avidin- and HSA-Psomes) by POST Loading
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Nanoparticles also can act as a “medium and carrier”

(i) Size and flexibility, the small and controllable size is suitable for conducting antimicrobial operations;

(i)  Protection, drugs are protected from detrimental chemical reactions improving the potency of the drugs;

(iii) Precision and security, nanocarriers help to target antibiotics to an infection site minimizing systemic side
effects;

(iv) Controllability, sustained and controllable release of antibiotics can be achieved flexibly;

(v) Combination or synergic effects, multiple drugs or antimicrobials can be packaged within the same nanocarrier.
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