Menü

Publikationsliste

Authors Hosseini, S.M. ; Shahrousvand, M. ; Shojaei, S. ; Khonakdar, H. A. ; Asefnejad, A. ; Goodarzi, V.
Title Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability
Date 01.06.2020
Number 58385
Abstract In this work, a novel environmentally friendly semi-interpenetrating anionic hydrogel based on Xanthan gum/cross-linked polyacrylic acid/graphene oxide was prepared as superabsorbent for removing methylene blue as cationic dye from the water. Acrylic acid (AA) was crosslinked in xanthan (XG)/graphene oxide (GO) solution by a novel synthetic acrylic-urethane crosslinker (MS). Various analyses such as SEM, FT-IR, 1H NMR, XRD, and TGA were used to study morphology, structure, and thermal stability of MS and semi-IPNs. The synthesized hydrogels showed pH-sensitive behavior in water uptake, with the highest and lowest swelling in alkaline and acidic media, respectively. The nanocomposites had better dimension stability and dye adsorption with increasing GO from 0 to 1%. Hydrogel containing 1% GO showed 485% and 88.5% swelling and dye adsorption efficiency, respectively. Different kinetic models including 1st order, 2nd order, intra-particle diffusion, and Elovich kinetics were studied. All models except 2nd order model are in good agreement with the experimental data. GO-containing hydrogels had a significant effect on methylene blue adsorption and this effect increased with an increase in the amount of GO. PAA/XG/GO hydrogels can be introduced as an eco-friendly adsorbent with high efficiency for the removal of cationic dye pollutions.
Publisher International Journal of Biological Macromolecules
Wikidata
Citation International Journal of Biological Macromolecules 152 (2020) 884-893
DOI https://doi.org/10.1016/J.IJBIOMAC.2020.02.082
Tags

Back to list