Menü

Publikationsliste

Authors Aghjeh, M. R. ; Mardani, E. ; Rafiee, F. ; Otadi, M. ; Khonakdar, H. A. ; Jafari, S.H. ; Reuter, U.
Title Analysis of dynamic oscillatory rheological properties of PP/EVA/organo-modified LDH ternary hybrids based on generalized Newtonian fluid and generalized linear viscoelastic approaches
Date 01.02.2017
Number 52121
Abstract A comprehensive investigation was performed on single-step melt processed polypropylene (PP)/(ethylene vinyl acetate copolymer (EVA)/organo-modified layered double hydroxide (LDH) counterpart ternary hybrids to explore the effect of LDH loading on small-amplitude oscillatory shear (SAOS) rheological properties and to correlate the properties with microstructure. The rheological results were analyzed in detail from qualitative and quantitative perspectives. Using qualitative interoperation of storage modulus and complex viscosity alteration against LDH loading, and also quantitative analysis by viscosity models based on both the generalized Newtonian fluid (GNF) and generalized linear viscoelastic (GLVE) approaches, detailed predictions were carried out on the microstructure of samples and also partitioning of the organo-modified LDH particles and their intercalation and exfoliation extent within hybrids. By comparing the elasticity and relaxation spectrum of PP-rich/LDH with those of EVA-rich/LDH hybrids, it was predicted that organo-modified LDH platelets, in the case of PP-rich samples, have been located at the interface or within the EVA dispersed particles, while in the case of EVA-rich samples, they mainly localized within the matrix. In addition, the crossover frequency and slope of G´ and G´´ curve at terminal region were correlated with the extent of intercalated and exfoliated structures of filler. The validity of these predictions on microstructure of the developed hybrids was confirmed visually using transmission electron microscope (TEM) micrographs.
Publisher Polymer Bulletin
Wikidata
Citation Polymer Bulletin 74 (2017) 465-482
DOI https://doi.org/10.1007/s00289-016-1724-1
Tags

Back to list