Matrix Engineering


Dr. Uwe Freudenberg, researcher
Dr. Petra Welzel, researcher
Dr. Mikhail Tsurkan, researcher
Dr. Karolina Chwalek, researcher
Marcus Binner, PhD student
Passant Atallah, PhD student
Ulrich Bonda, PhD student
Dominik Hahn, PhD student
Dejan Husman, PhD student
Yanuar Dwi Putra Limasale, PhD student
Silvana Prokoph, PhD student
Lucas Schirmer, PhD student
Heather Weber, PhD student
Milauscha Grimmer, technician

Design and application of polymer matrices for regenerative therapies

Polymer matrices with temporally and spatially tuned cell signaling characteristics are developed for in vitro or in vivo tissue engineering. For this purpose, the physical and molecular stimuli of cellular microenvironments are systematically imitated using reconstituted biopolymer assemblies (consisting of collagen I, fibronectin, and other components of the extracellular matrix), supported lipid bilayer membranes, as well as synthetic and biohybrid hydrogels. Several projects are aimed towards the utilization of stem cells in new therapeutic strategies by creating combinations of exogenous signals for the control of self-renewal and differentiation of these cells – the „stem cell niche“. Accordingly, the molecular understanding of cell-matrix adhesion, the effect of physical stimuli (micro- and nanostructure, elasticity of matrices), and biomolecular cues (chemokines and growth factors) are priority research objectives.

Biohybrid Hydrogels

Biohybrid materials combining synthetic and biological building blocks are being developed to modulate key functions of the ECM. Therefore, our objectives are to design and implement hybrid gel systems incorporating a bioactive glycosaminoglycan (GAG, e.g. heparin or other glycosaminoglycans) and synthetic polymers (e.g. star-shaped poly(ethylene-glycol) (star-PEG)) as main building blocks. Such hydrogel systems provide tunable material properties (e.g. adjustable mechanical characteristics and hydration) and enhanced biological functions. Key to our approach is the high affinity of the sulfated GAGs for the reversible binding and release of a variety of cytokines and chemokines (e.g. growth factors). The incorporation of specific peptide sequences allows for versatile functionalization of the hydrogels. Peptide structures can be used as cross-linker between the two main building blocks to allow for in situ gel formation and to promote cell adhesion through the presentation of adhesion ligands, and control enzyme-mediated degradation.

Current activities  

  • Functional hydrogels for cell embedding
  • Hydrogel based protection, presentation, and release of signaling molecules
  • Diffusion processes/chemokine gradient formation through hydrogel matrices
  • Micro-structuring of hydrogels utilizing cryo-gelation, embossing, photo structuring and plotting methods
  • Hydrogel-arrays for cell tracking applications
  • Modeling of network properties utilizing a mean field concept
  • In-situ polymerizable hydrogels for endothelial tube formation in 3D
  • Functional hydrogels to treat neurodegenerative diseases/to explore neurogenesis
  • Chemotaxis of endothelial progenitor cells
  • Control of polarity formation of adult hepatocytes
  • Hydrogel based modulation of wound healing/immune response

Selected publications

  • Freudenberg, U.; Zieris, A.; Chwalek, K.; Tsurkan, MV.; Maitz, MF.; Atallah, P.; Levental, KR.; Eming, SA.; Werner, C.:
    Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds. Journal of Controlled Release 220, Part A, (2015) 79–88, doi: 10.1016/j.jconrel.2015.10.028
  • Newland, B.; Welzel, P.; Newland, H.; Renneberg, C.; Kolar, P.; Tsurkan, M.; Rosser, A.; Freudenberg, U.;  Werner, C.:
    Tackling cell transplantation anoikis: an injectable, shape memory cryogel microcarrier platform material for stem cell and neuronal cell growth. Small 2015, Doi:10.1002/smll.201500898
  • Tsurkan, M.V.; Wetzel, R.; Pérez-Hernández, H.R.; Chwalek, K.; Kozlova, A.; Freudenberg, U.; Kempermann, G.; Zhang, Y.; Lasagni, A.F.; Werner, C.:
    Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Advanced Healthcare Materials 4 (2015) 516-521
  • Thompson, M.; Tsurkan, M.; Chwalek, K.; Bornhäuser, M.; Schlierf, M.; Werner, C.; Zhang, Y.:
    Self-assembling hydrogels crosslinked solely by receptor-ligand interactions: tunability, rationalization of physical properties and 3D cell culture. Chemistry – A European Journal 21 (2015) 3178-3182
  • Müller, E.; Grinenko, T.; Pompe, T.; Waskow, C.; Werner, C.:
    Space constraints govern fate of murine hematopoietic stem and progenitor cells in vitro. Biomaterials 53 (2015) 709-715
  • Fischer, M.; Vahdatzadeh, M.; Konradi, R.; Friedrichs, J.; Maitz, M.; Freudenberg, U.; Werner, C.:
    Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity. Biomaterials 56 (2015) 198-205
  • Bray, L.; Binner, M.; Holzheu, A.; Friedrichs, J.; Freudenberg, U.; Hutmacher, D.W.; Werner, C.:
    Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 59 (2015) 609-620
  • Wieduwild, R.; Krishnan, S.; Chwalek, K.; Boden, A.; Nowak, M.; Drechsel, D.; Werner C.; Zhang, Y.:
    Non-covalent hydrogel beads as microcarriers for cell culture. Angewandte Chemie – International Edition 13 (2015) 3962-3966
  • Chwalek, K.; Bray, L.J.; Werner, C.:
    Tissue-engineered 3D tumor angiogenesis models: Potential technologies for anti-cancer drug discovery. Advanced Drug Delivery Reviews 79-80 (2014) 30-39
  • Zieris, A.; Dockhorn, R.; Röhrich, A.; Zimmermann, R.; Mueller, M.; Welzel, P.; Tsurkan, M.; Sommer, J.-U.; Freudenberg, U.; Werner, C.:
    Biohybrid networks of selectivity desulfated glycosaminoglycans for tunable growth factor delivery. Biomarcomolecules 15 (2014) 14608-14620
  • Tsurkan, M.; Chwalek, K.; Schoder, M.; Freudenberg, U.; Werner, C.:
    Chemoselective peptide functionalization of starPEG-GAG hydrogels.
    Bioconjugate Chemistry 25 (2014) 1942-1950
  • Tsurkan, M.; Wetzel, R.; Pérez-Hernandez, H.R.; Chwalek, K.; Kozlova, A.; Freudenberg, U.; Kempermann, G.; Zhang, Y.; Lasagni, A.F.; Werner, C.:
    Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Advanced Healthcare Materials 2014, doi: 10.1002/adhm.201400395
  • Welzel, P.; Friedrichs, J.; Grimmer, M.; Vogler, S.; Freudenberg, U.; Werner, C.:
    Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation. Advanced Healthcare Materials 3 (2014) 1849-1853
  • Chwalek, K.; Tsurkan, M.; Freudenberg, U.; Werner, C.:
    Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Scientific Reports 4 (2014) 4414
  • Maitz, M.F.; Freudenberg, U.; Tsurkan, M.; Fischer, M.; Beyrich, T.; Werner, C.:
    Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nature Communications 4:2168 (2013) 7 pages (open)
  • Tsurkan, M.; Chwalek, K.; Prokoph, S.; Zieris, A.; Levental, K.; Freudenberg, U.; Werner, C.:
    Defined polymer-peptide conjugates to form cell-instructive starPEG-heparin matrices in situ. Advanced Materials 25 (2013) 2606-2610
  • Wieduwild, R.; Tsurkan, M.; Chwalek, K.; Murawala, P.; Nowak, M.; Freudenberg, U.; Neinhuis, C.; Werner, C.; Zhang, Y.:
    Minimal peptide motif for non-covalent peptide-heparin hydrogels. Journal of the American Society 135 (2013) 2919-2922
  • Prokoph, S.; Chavakis, E.; Levental, K.; Zieris, A.; Freudenberg, U.; Dimmeler, S.; Werner, C.:
    Sustained delivery of SDF-1a from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials 33 (2012) 4792-4800
  • Freudenberg, U.; Sommer, J.-U.; Levental, K.; Welzel, P.; Zieris, A ; Chwalek, K ; Schneider, K. ; Prokoph, S. ; Prewitz, M. ; Dockhorn, R. ; Werner, C.:
    Using mean field theory to guide biofunctional materials design. Advanced Functional Materials 22 (2012) 1391-1398
  • Zieris, A.; Chwalek, K.; Prokoph, S.; Levental, K.R.; Welzel, P.B.; Freudenberg, U.; Werner, C.:
    Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels. Journal of Controlled Release 156 (2011) 28-36
  • Chwalek, K.; Levental, K.R.; Tsurkan, M.V.; Zieris, A.; Freudenberg, U.; Werner, C.:
    Two-tier hydrogel degradation to boost endothelial cell morphogenesis. Biomaterials 32 (2011) 9649-9657
  • Welzel, P.B.; Grimmer, M.; Renneberg, C.; Naujox, L.; Zschoche, S.; Freudenberg, U.; Werner, C.:
    Macroporous starPEG-heparin cryogels. Biomacromolecules 13 (2012) 2349-2358
  • Freudenberg, U.; Hermann, A.; Welzel, P. B.; Stirl, K.; Schwarz, S. C.; Grimmer, M.; Zieris, A.; Panyanuwat, W.; Zschoche, S.; Meinhold, D.; Storch, A.; Werner, C.:
    A starPEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30 (2009) 5049-5060


Dr. Marina Prewitz, researcher
David Gvaramia, PhD student
Valentina Magno, PhD student

Synthetic and biological polymer matrices are utilized to analyze and control cell fate decisions in dependence of microenvironmental cues. In a matrix
engineering approach we design new biomimetic extracellular microenvironments by varying topology and mechanics of the extracellular matrix, distribution and mobility of ligands, as well as the mode of growth factor presentation. Based on the biophysical and biochemical characterization of these matrices and the resulting cellular responses we aim to support a systemic understanding of exogenous cell signaling in the context of new biotechnological strategies and regenerative therapies.

Current activities

  • Cell signaling at the cell-material interface
  • Engineering cellular microenvironments
  • Micro-structuring of reconstituted extracellular matrix proteins
  • Cell-generated extracellular matrices
  • Organ-specific decellularized extracellular matrices
  • In vitro support and control of adult stem cell populations (Hematopoietic stem cells, Mesenchymal stem cells, Neuro-progenitor cells)

Selected publications

  • Prewitz, M.; Stißel, A.; Friedrichs, J.; Träber, N.; Vogler, S.; Bornhäuser, M.; Werner, C.:
    Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding. Biomaterials 73 (2015) 60-69
  • Herklotz, M.; Prewitz, M.C.; Bidan, C.M.; Dunlop, J.W.C.; Fratzl, P.; Werner, C.:
    Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine three-dimensional tissue-like growth in vitro. Biomaterials 60 (2015) 121-129
  • Prewitz, M.; Seib, P.; Pompe, T.; Werner, C.:
    Biomaterials to direct stem cell fate. In: Stem Cells: From Basic Research to Therapy, Volume 2: Tissue Homeostasis and Regeneration during Adulthood, Applications, Legislation and Ethics/ed. by F. Calgari and C. Waskow. CRC Press 2014, Part II: 238-271
  • Prewitz, M.; Seib, P.; Bonin, M.; Friedrichs, J.; Stißel, A.; Niehage, C.; Müller, K.; Anastassiadis, K.; Waskow, C.; Hoflack, B.; Bornhäuser, M.; Werner, C.:
    Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods 10 (2013) 788-794
  • Prewitz, M.; Seib, P.; Pompe, T.; Werner, C.:
    Polymeric biomaterials for stem cell bioengineering. Macromolecular Rapid Communications 33 (2012) 1420-1431
  • Lanfer, B.; Hermann, A.; Kirsch, M.; Freudenberg, U.; Reuner, U.; Werner, C.; Storch, A.:
    Directed growth of adult human white matter stem cell-derived neurons on aligned fibrillar collagen. Tissue Engineering Part A 16 (2010) 1103-1113
  • Sebinger, D. R.; Unbekandt, M.; Ganeva, V.; Ofenbauer, A.; Werner, C.; Davies, J.A.:
    A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization. PloS ONE 5 (2010) e105
  • Pompe, T.; Salchert, K.; Alberti, K.; Zandstra, P.; Werner, C.:
    Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nature Protocols 5 (2010) 1042-1050
  • Kurth, I.; Franke, K.; Pompe, T.; Bornhäuser, M.; Werner, C.:
    Hemapoietic stem and progenitor cells in adhesive microcavities. Integrative Biology 1 (2009) 427-434
  • Seib, F. P.; Bornhäuser, M.; Prewitz, M.; Werner, C.:
    Matrix elasticity regulates cytokine expression of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochemical and Biophysical Research Communications 389 (2009) 663-667
  • Seib, F. P.; Müller, K.; Franke, M.; Grimmer, M.; Bornhäuser, M.; Werner, C.:
    Engineered extracellular matrices modulate the expression profile and feeder properties of bone marrow-derived human multipotent mesenchymal stromal cells. Tissue Engineering: Part A 15 (2009) 3161-3171
  • Alberti, K.; Davey, R. E., Onishi, K.; George, S.; Salchert, K.;  Seib, F. P.; Bornhäuser, M.; Pompe, T.; Nagy, A.; Werner, C.;  Zandstra, P.W.:
    Functional Immobilization of Signaling Proteins Enables Control of Stem Cell Fate. Nature Methods 5 (2008) 645-650
  • Salchert, K.; Streller, U.; Pompe, T.; Herold, N.; Grimmer, M.; Werner, C.:
    In vitro reconstitution of fibrillar collagen type I assemblies at reactive polymer surfaces. Biomacromolecules 5 (2004) 1340-1350


  • Tecan FreedomEvo 75 ELISA robot
  • MuliPlex Analyzer (BioRad Bio-Plex 200)
  • Laser scanning microscope (Leica SP5)
  • Flow Cytometer (BD FACSCalibur; Miltenyi-Biotech MACSQuant)
  • 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE)
  • FujiFilm FLA-5100 Image Reader
  • Scanning electron microscope
  • Transmission electron microscope
  • Radioisotope laboratory