Publications > Publication List

Publication List

By Year    By Author    Search
Toshchevikov, V. ; Grenzer, M. ; Heinrich, G.
Theory of light-induced deformation of azobenzene elastomers : Influence of network structure

Azobenzene elastomers have been extensively explored in the last decade as photo-deformable smart materials which are able to transform light energy into mechanical stress. Presently, there is a great need for theoretical approaches to accurately predict the quantitative response of these materials based on their microscopic structure. Recently, we proposed a theory of light-induced deformation of azobenzene elastomers using a simple regular cubic network model [V. Toshchevikov, M. Saphiannikova, and G. Heinrich, J. Phys. Chem. B 116, 913 (2012)]. In the present study, we extend the previous theory using more realistic network models which take into account the random orientation of end-to-end vectors of network strands as well as the molecular weight distribution of the strands. Interaction of the chromophores with the linearly polarized light is described by an effective orientation potential which orients the chromophores perpendicular to the polarization direction. We show that both monodisperse and polydisperse azobenzene elastomers can demonstrate either a uniaxial expansion or contraction along the polarization direction. The sign of deformation (expansion/contraction) depends on the orientation distribution of chromophores with respect to the main chains which is defined by the chemical structure and by the lengths of spacers. The degree of cross-linking and the polydispersity of network strands do not affect the sign of deformation but influence the magnitude of light-induced deformation. We demonstrate that photo-mechanical properties of mono- and poly-disperse azobenzene elastomers with random spatial distribution of network strands can be described in a very good approximation by a regular cubic network model with an appropriately chosen length of the strands. © 2012 American Institute of Physics

Source
Journal of Chemical Physics 137, 024903 1

DOI
http://link.aip.org/link/doi/10.1063/1.4731663

Published
August 2012
 
Publication List
Publikationsliste

Publications

News